Understanding and ExploitingDesign-Induced Latency Variation in Modern DRAM Chips

نویسندگان

  • Donghyuk Lee
  • Samira Khan
  • Lavanya Subramanian
  • Rachata Ausavarungnirun
  • Gennady Pekhimenko
  • Vivek Seshadri
  • Saugata Ghose
  • Onur Mutlu
چکیده

Variation has been shown to exist across the cells within a modern DRAM chip. Prior work has studied and exploited several forms of variation, such as manufacturing-processor temperature-induced variation. We empirically demonstrate a new form of variation that exists within a real DRAM chip, induced by the design and placement of different components in the DRAM chip: different regions in DRAM, based on their relative distances from the peripheral structures, require different minimum access latencies for reliable operation. In particular, we show that in most real DRAM chips, cells closer to the peripheral structures can be accessed much faster than cells that are farther. We call this phenomenon design-induced variation in DRAM. Our goals are to i) understand design-induced variation that exists in real, stateof-the-art DRAM chips, ii) exploit it to develop low-cost mechanisms that can dynamically find and use the lowest latency at which to operate a DRAM chip reliably, and, thus, iii) improve overall system performance while ensuring reliable system operation. To this end, we first experimentally demonstrate and analyze designed-induced variation inmodern DRAM devices by testing and characterizing 96 DIMMs (768 DRAM chips). Our characterization identifies DRAM regions that are vulnerable to errors, if operated at lower latency, and finds consistency in their locations across a given DRAM chip generation, due to design-induced variation. Based on our extensive experimental analysis, we develop two mechanisms that reliably reduce DRAM latency. First, DIVA Profiling uses runtime profiling to dynamically identify the lowest DRAM latency that does not introduce failures. DIVA Profiling exploits designinduced variation and periodically profiles only the vulnerable regions to determine the lowest DRAM latency at low cost. It is the first mechanism to dynamically determine the lowest latency that can be used to operate DRAM reliably. DIVA Profiling reduces the latency of read/write requests by 35.1%/57.8%, respectively, at 55°C. Our second mechanism, DIVA Shuffling, shuffles data such that values stored in vulnerable regions are mapped to multiple error-correcting code (ECC) codewords. As a result, DIVA Shuffling can correct 26% more multi-bit errors than conventional ECC. Combined together, our two mechanisms reduce read/write latency by 40.0%/60.5%, which translates to an overall system performance improvement of 14.7%/13.7%/13.8% (in 2-/4-/8-core systems) across a variety of workloads, while ensuring reliable operation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding Reduced-Voltage Operation in Modern DRAM Chips: Characterization, Analysis, and Mechanisms

The energy consumption of DRAM is a critical concern in modern computing systems. Improvements in manufacturing process technology have allowed DRAM vendors to lower the DRAM supply voltage conservatively, which reduces some of the DRAM energy consumption. We would like to reduce the DRAM supply voltage more aggressively, to further reduce energy. Aggressive supply voltage reduction requires a ...

متن کامل

Understanding and Improving the Latency of DRAM-Based Memory Systems

Over the past two decades, the storage capacity and access bandwidth of main memory have improved tremendously, by 128x and 20x, respectively. These improvements are mainly due to the continuous technology scaling of DRAM (dynamic random-access memory), which has been used as the physical substrate for main memory. In stark contrast with capacity and bandwidth, DRAM latency has remained almost ...

متن کامل

Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity

In modern systems, DRAM-based main memory is significantly slower than the processor. Consequently, processors spend a long time waiting to access data from main memory, making the long main memory access latency one of the most critical bottlenecks to achieving high system performance. Unfortunately, the latency of DRAM has remained almost constant in the past decade. This is mainly because DR...

متن کامل

Architectural Techniques to Enhance DRAM Scaling

For decades,mainmemory has enjoyed the continuous scaling of its physical substrate: DRAM(DynamicRandomAccessMemory). But now,DRAMscaling has reached a thresholdwhereDRAMcells cannot bemade smaller without jeopardizing their robustness. This thesis identifies two specific challenges to DRAM scaling, and presents architectural techniques to overcome them. First, DRAMcells are becoming less relia...

متن کامل

Reducing DRAM Access Latency by Exploiting DRAM Leakage Characteristics and Common Access Patterns

DRAM-based memory is a critical factor that creates a bottleneck on the system performance since the processor speed largely outperforms the DRAM latency. In this thesis, we develop a low-cost mechanism, called ChargeCache, which enables faster access to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016